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Structure of growing social networks
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We propose some simple models of the growth of social networks, based on three general principles:~1!
meetings take place between pairs of individuals at a rate that is high if a pair has one or more mutual friends
and low otherwise;~2! acquaintances between pairs of individuals who rarely meet decay over time;~3! there
is an upper limit on the number of friendships an individual can maintain. Using computer simulations, we find
that models that incorporate all of these features reproduce many of the features of real social networks,
including high levels of clustering or network transitivity and strong community structure in which individuals
have more links to others within their community than to individuals from other communities.
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I. INTRODUCTION

Many real-world systems take the form of networks
nodes or ‘‘vertices’’ joined together by links or ‘‘edges.
Commonly cited examples include communication netwo
such as the Internet or the telephone network, informa
networks such as the world-wide web, transportation n
works such as airline routes or roads, distribution netwo
such as the movements of delivery trucks or the blood v
sels of the body, and other naturally occurring networks s
as food webs or metabolic networks. In the last few ye
there has been a substantial amount of interest in netw
structure and function within the physics community; s
Refs.@1–3# for reviews. In particular, it turns out that man
of the techniques of statistical physics, such as scaling
renormalization group methods, Monte Carlo simulation, a
mean-field theory, are well suited to the study of these s
tems.

One specific question that has received a large amoun
attention in the physics literature concerns the structure
networks that are evolving over time. While many networ
such as metabolic networks or blood vessels, are fundam
tally static and do not change their topology, many oth
change substantially over time. The classic example is
world-wide web. The vertices in this network are web pag
and the~directed! edges between them are hyperlinks fro
one page to another. This network is certainly changi
pages are added to the web at a rate of over a million pa
a day, according to some estimates, while other pages d
pear. It is widely believed that the rapid growth of the w
leaves a highly distinctive signature in the resulting netwo
including such characteristic features as power-law deg
distributions @4,5#, correlations between degree and age
vertices@6#, and correlations between degrees of connec
vertices@7,8#. A number of models of the growing web hav
been proposed, which convincingly reproduce some or a
these features@6–11#.

The web however was not the first type of network
catch the eye of the physics community. In a seminal pa
in 1998, Watts and Strogatz@12# discussed a number of fea
tures of social networks—networks of acquaintance betw
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people, for instance—and introduced a simple model o
~static! social network, which has since been analyzed
depth in the physics literature@1,13–17#. Social networks
also evolve, with new acquaintances forming between in
viduals and old ones decaying. However, it is clear that
evolution of a social network is governed by very differe
processes from those that govern the evolution of the wo
wide web. In this paper, we propose some new models of
evolution of social networks. In the same spirit as the hig
successful models of web growth~and indeed of most of
statistical physics!, these models are based on simple s
chastic processes and do not attempt to capture the m
scopic details of social dynamics. As we will see, howeve
number of nontrivial but intuitively reasonable resu
emerge from these models, including the formation
closely knit communities within the network and the dev
opment of a high degree of network transitivity.

II. MECHANISMS OF SOCIAL NETWORK GROWTH

The key elements in previous network growth mode
such as models of the growth of the world-wide web, are~1!
continual addition of both vertices and edges to the netw
as time passes and~2! preferential attachment, meaning th
edges are more likely to connect to vertices of high deg
than to ones of low degree.~The degree of a vertex is th
number of other vertices to which it is connected.! Other
features, such as removal of vertices or edges, or movem
of edges to new positions in the network, can also be inc
porated@18#, but the crucial features of power-law degre
distributions and correlations between vertex degrees are
produced with only the elements~1! and ~2! above.

Growth models of this type are, as mentioned above, q
inappropriate as models of the growth of social networks
a number of reasons as follows.

~1! New vertices are of course added to social netwo
all the time: people are born and people travel around join
new networks and leaving old ones. However, the timesc
on which people make and break social connections, wh
can be as short as hours or days, is much shorter than
©2001 The American Physical Society32-1
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timescale on which vertices join or leave the network, wh
is typically some years. For this reason, we expect that
addition and removal of vertices will not be a major fact
determining the instantaneous structure of social netwo
and to a first approximation these networks can therefore
treated using a model with a constant number of vertices
a varying number and arrangement of edges. This is in sh
contrast to models of web growth.

~2! The degree distribution of many acquaintance n
works does not appear to follow a power-law distribution,
the degree distribution of the web does. Instead the distr
tion appears to be strongly peaked around a certain m
degree~whose value depends on what definition of acqua
tance one adopts! and is not noticeably right skewed@19,20#.
The typical explanation for this result is that there is a rec
ring cost in terms of time and effort to maintaining a frien
ship, and given limited resources people can only mainta
certain number of them. Indeed, in cases of networks
which there is little cost, or only a one-time cost, to incre
ing one’s degree, e.g., in networks of sexual contacts@21#,
highly skewed and possibly power-law degree distributio
are seen. In our work, we have assumed, as is usually
case, that there are costs to friendship and hence vertex
grees are narrowly distributed.

~3! The lack of a power-law degree distribution in a
quaintance networks also suggests that the preferentia
tachment mechanism is not an important one. Since m
people have about the same number of friends, it makes
difference whether people with more friends attract new o
at a higher rate.

~4! Lastly, and perhaps most importantly, social netwo
show ‘‘clustering,’’ also called ‘‘transitivity’’ in the socio-
logical literature. Clustering is the propensity for two
one’s friends to be friends also of each other and is v
common in social networks. Growth models of the web sh
weak clustering—the probabilityC that two neighbors of a
given vertex will be neighbors also of one another, a
called the clustering coefficient, is greater by a factor
about 5 than in the corresponding baseline network, a
dom graph in which edges are assigned to vertices c
pletely at random@3#. However, in social networksC can be
thousands or millions of times greater than in the cor
sponding random graph@12,22#. The importance of this re
sult has been emphasized extensively in the literature@23#,
and certainly any reasonable model of social network gro
should incorporate it.

Taking each of these points into account, we propose
following as a minimal set of features that a model of soc
network evolution should have.

~1! Fixed number of vertices: we consider a closed po
lation of fixed size.

~2! Limited degree: the probability of a person developi
a new acquaintance should fall off sharply once their curr
number of friends reaches a certain level.

~3! Clustering: the probability of two people becomin
acquainted should be significantly higher if they have one
more mutual friends.

~4! Decay of friendships: Given that the number of ver
ces is fixed and the degree is limited, friendships must
04613
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broken as well as made if the evolution of the network is n
to stagnate.

In the following sections we propose and study two mo
els that have these properties. The first model is quite gen
in its formulation, allowing for arbitrary functional forms
representing people’s propensity to form friendships. T
model makes a reasonable stab at realism in its represe
tion of network evolution, but turns out to be cumbersome
simulate and analytically intractable. So we also propos
second model, a much simplified version of the first, wh
reproduces the characteristic features of the first model,
beit in stylized form, and which can be simulated with co
siderably greater efficiency. This second model is similar
its level of sophistication to the previously studied models
growth of the web and other networks, and may be simila
amenable to analytic treatment, although we have not
tempted an analytic treatment here.

III. MODEL I

We consider the following mechanism for the growth
social networks. Pairs of individuals meet with a probabil
per unit time, which depends on how many mutual frien
they have. If they have no mutual friends, then there is o
a very small chance of their meeting, but if a pair have
friend in common, then their chance of meeting is increa
substantially. In the particular case of networks of collabo
tion between scientists, the existence of this effect has b
verified by direct empirical measurement@24#. The presumed
mechanism that drives it is a social one: people often in
duce pairs of their friends to one another, either delibera
or simply by virtue of bringing them together in the sam
place.

We also place a limit on the numberz of friends that
people can have by arranging for the probability of th
forming new friendships to fall off beyond some cutoff poi
z* .

If only these two mechanisms were in place, we wou
get a network that would grow until all or most people h
aboutz* friends and then stop growing. The structure of t
community would not change after its initial formation. I
fact, Watts @23# has described just such a model, his ‘‘a
model,’’ in which a hard upper limit is placed on the numb
of acquaintances an individual can have, and the model d
indeed stop evolving once everyone has this many. In
real world, however, social networks do not stop evolvin
Although there really does appear to be an upper limit to
numbers of people’s friends, the network continues
change because friendships are broken as well as made
account for this, we propose an obvious mechanism: we p
pose that even after a pair of people become acquainted,
still need to meet regularly in order to maintain that acqua
tance. If they cease meeting, their acquaintance cease
well. ~Many people say that they have friends they rarely
but with whom they nonetheless remain acquainted. We
count such friendships from our model since there is ess
tially no cost to such a friendship and hence it does not
under the influence of our upper limit on friendship numbe!

Thus our model has three components:~1! friendships
2-2
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STRUCTURE OF GROWING SOCIAL NETWORKS PHYSICAL REVIEW E64 046132
form when people meet, which happens preferentially
tween pairs of people who have one or more mutual acqu
tances;~2! the number of a person’s friends is limited;~3!
friendships decay and disappear if the two people in ques
do not meet on a regular basis. In detail we implement th
components as follows.

The probability per unit timepi j of two given people,i
and j, meeting depends on two factors:~1! the number of
friendszi andzj each person already has and~2! the number
mi j of mutual friends shared by both. We represent th
factors by functionsf andg thus,

pi j 5 f ~zi ! f ~zj !g~mi j !. ~1!

The functionf (z) is presumably large and roughly consta
for small z, but falls off sharply around the transition valu
z* . One possible functional form with these properties is
Fermi function

f ~zi !5
1

eb(zi2z* )11
, ~2!

and we have used this form for the simulations descri
here. The temperaturelike parameterb controls the sharpnes
of the falloff at z* .

The functiong(m) represents the expected increase in
likelihood that two people will meet if they have one or mo
mutual friends. In recent studies of collaboration netwo
@24#, this function was measured directly and found to
well fit by the simple exponential form

g~m!512~12p0!e2am, ~3!

wherep0 represents the probability of a chance meeting
tween two people with no mutual acquaintances and the
rametera controls the rate at whichg(mi j ) increases.

The forms forf andg chosen here are somewhatad hoc,
but we have experimented with other forms and found
qualitative predictions of the model to be the same. Amon
other things, this provides some justification for the simp
model presented in Sec. IV, which does not contain arbitr
functions of this sort.

And what happens once two people meet? Friendship
not merely exist or not exist: we have friends whom we s
every week, once a month, or whom we gradually lose to
with. We represent this in our model by giving each frien
ship a strength. When two peoplei and j meet, the strength
si j of the connection between them is set to 1. Then as t
passes and they do not meet again the strength decays
nentiallysi j 5e2kDt, whereDt is the time since they last me
and k is an adjustable parameter of the model. If they
meet again,si j is set back to 1. Thus the time averag
strength of a connection is measure of how often peo
meet.

For the purposes of constructing pictures of our networ
we normally place a threshold on the connections, and c
sider only those whose strength is greater than that thres
to be active friendships. For the figures in the following se
04613
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tion the threshold value used was 0.3. The same criterio
used for counting numbers of mutual friends and for cal
lating clustering coefficients.

A. Results

We have simulated the model described in the previ
section for networks of up to 1000 vertices. In order to pi
pairs of individuals with the correct probability per unit tim
Eq. ~1!, we use a continuous-time Monte Carlo method~also
called an ‘‘n-fold way’’ algorithm! @25#. Simulations can be
initialized in a variety of ways: one can, for example, st
with a random graph in which each vertex has average
greez* . In our simulations, we started with an empty ne
work having no edges and then allowed edges to appear
the decay parameterk set to zero or to a very small value
After each individual has formed aboutz* friendships, the
evolution of the network then stagnates because no m
edges can be either added or removed. At this point we sk
to a larger, more realistic value and watch the subsequ
evolution of the network. Statistics such as the cluster
coefficientC and the average path length are measured
function of time.

Figure 1 shows a snapshot of the network from a simu
tion with N5250 vertices withk50.01, b55, andz* 55.
There are a number of interesting features of this netwo
First, it has a high clustering coefficient ofC.0.45. The
clustering coefficient for a random graph of the same s
and number of edges is roughlyz* /N50.02. Thus our mode
clearly reproduces the strong clustering of real social n
works. This, however, is no great surprise; the prima
mechanism of network evolution in the model—the meet

FIG. 1. Sample network generated by model I. In this simulat
there whereN5250 vertices, andk50.01, b55. During the
course of the simulation the isolated components did not join
main component.
2-3
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FIG. 2. The hierarchical tree or dendrogra
showing community structure for a network wit
N5250, k50.01, b55, calculated as describe
in the text. In this case, we have designated se
rate communities by whether their lowest co
necting path in the tree falls above or below
specified threshold, indicated by the horizont
dotted line, and the components have been spa
out and shaded to illustrate this designation. T
threshold value is chosen using a criterion bas
on the density of edges within components as d
scribed in Ref.@26#.
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of pairs of people with high numbers of mutual friends—
clearly geared precisely towards creating such strong clus
ing. Nonetheless, our results provide a demonstration
such mechanisms can produce clustering in social netwo

A less trivial outcome that emerges from our model is
formation of clearly defined communities. As Fig. 1 show
there are groupings of vertices in the network among wh
there is a high density of connections and between wh
there are few connections. Most of these communities
joined together in one large connected component, but th
are also a small number of communities that have no c
nection with the main body of the graph~although as we will
see shortly, the existence of such islands depends on
precise choice of the parameters in the model!.

One way to examine the community structure quant
tively is to assign a ‘‘connection strength’’ to every pair
vertices in the network and then examine the compon
structure of the graph as edges are added between v
pairs in order of decreasing strength, starting from a gr
with no edges. Here we use this method with a connec
strength that is a weighted sum of the number of differ
paths through the network between vertex pairs, with sho
paths weighted more heavily than longer ones@26#. ~The
paths we consider need not be node- or edge-indepen
although connection strengths based on node-indepen
paths have been considered elsewhere@27#.! To visualize the
community structure extracted by this calculation, we draw
hierarchical tree showing the order in which compone
form and are joined together. Such trees have been u
widely in social network analysis, where they are sometim
called ‘‘dendrograms’’@28,29#, and occasionally in physic
too @30#.

Figure 2 shows the hierarchical tree for a network gen
ated by our model with parameters as in Fig. 1. The t
reveals strong community structure in the network: subs
tial connected components appear early in the clustering
cess~lower down in the tree! and persist until late~higher
up!. By contrast, a typical hierarchical tree for a rando
graph shows a few small components forming early in
process but these quickly combine into one giant compon
04613
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with subsequent edges only serving to connect individ
nodes to the giant component. The strong communities s
in Fig. 2 are absent in the random graph.

The formation of communities is of course seen in re
world social networks but was not a specific design feat
of our model. We can however explain it in terms of th
model’s dynamics as follows. If, during the growth of o
network, a region forms in which there is a higher than a
erage density of connections between vertices, then th
will also be more pairs of vertices in that region that ha
common acquaintances. Hence, new friendships will pre
entially form between those pairs and so the density of c
nections in the region will become higher still. Thus sm
initial fluctuations in network density can form the seeds
the growth of tightly connected communities.

Furthermore, communities in our model are se
sustaining structures. Within communities, many pairs
people necessarily have mutual friends and the commun
thus contain a high density of ‘‘triangles’’ of friendship
~The clustering coefficient can in fact be defined precisely
a measure of the density of such triangles@31#.! A triangle is
a self-sustaining structure in our model. Each pair of verti
in a triangle has a mutual neighbor in the third vertex and
a result, meetings between each pair take place at a m
higher rate than between randomly chosen pairs of vert
in the graph. Thus the strength of the connection betw
each pair of vertices is repeatedly reinforced. This means
edges within a community have a greater lifetime on aver
than those between communities—the community struc
is created by mutual friendships and helps to sustain the

B. Other behaviors of the model

The behavior described above is typical of a large reg
of the parameter space of this first model. However, for
treme values of the parameters other behaviors are s
most of them rather unlike the behaviors of real social n
works.

Consider, for instance, the extreme cases where the d
rate k is either very slow or very fast. Figure 3 shows th
2-4
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FIG. 3. Clustering coefficient as a function of time fork50.001~left! andk520 ~right!. In the former case the clustering coefficient
high, but hardly fluctuates, since the network topology is almost constant. In the latter case, there is much fluctuation, but the vC
rarely rises above that for a random graph of the same size and edge density. (C would take the value 0.019 in the random graph.!
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time evolution of the clustering coefficientC for simulations
with k50.001 andk520. With an extremely slow deca
~top panel in the figure!, established connections decay ve
little before being reinforced by a repeat ‘‘meeting’’ of th
two corresponding vertices. Thus connections rarely dis
pear once established and the evolution of the network s
nates. We still get a high clustering coefficient, as the fig
shows, but it has almost no fluctuation with time because
topology of the network is not changing. This roughly repr
duces the behavior of Watts’sa model @23#. At the other
extreme, very rapid decay of connections prevents the
mation of any lasting friendships, producing a network th
is essentially a random graph with no clustering or comm
nity structure~right panel in Fig. 3!.

Between these two extremes, variation of the parame
produces slight variations on the basic behavior discusse
Sec. III A. In Fig. 1, for example, we saw the formation
well-connected communities, some of which could be i
lated from the rest of the graph. The length of time for whi
this isolation persists depends on the decay parameterk as
well as the parameterp0, which governs the probability of a
chance meeting between two people with no common
quaintances. Ifk is increased, then friendships decay mo
quickly, leaving some vertices with room for an extra ed
And if p0 is sufficiently high, then edges will occasionally b
formed between two isolated components of the graph. O
one such edge forms, there exist other pairs of vertices in
two components that have a common neighbor and he
more edges will quickly form between the components.
other words, once a single friendship forms between diff
ent communities, others usually follow. Note however th
as we saw above, higher decay ratek leads to a lower clus-
tering coefficient, and in fact the decrease in the cluster
coefficient can be seen as clear ‘‘steps’’ when different co
munities in the graph merge~see Fig. 4!. Thus it appears tha
communities that are less tightly connected internally~lower
C) allow for new connections to appear more easily betw
separate communities.

We can also vary the value of the temperature param
b. Decreasingb allows a vertex more flexibility about its
degree—it can add an extra edge more easily. Ifb is de-
creased while keeping the other parameters fixed, we
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that the basic community structure of the graph rema
roughly constant, as does the clustering coefficient, but
pattern of connections within communities is continua
changing. New edges are added to vertices occasionally
edges are removed to bring the mean degree back to a
z* . But the edges that are removed are not necessarily
same ones that were added. In Fig. 5 we show how the
tern of edges evolved in one such community during one
our simulations. This simulation seems to mimic a situat
in which the exclusivity of communities is maintained b
the friendships within those communities are brief and
sual, which may be a reasonable representation of cer
types of social organization.

IV. MODEL II

The model described in the first part of this paper h
many adjustable parameters, as well as the functionsf andg,

FIG. 4. Clustering coefficient as a function of time fork50.5,
p050.0001, andb56.67. The network settles into distinct group
that seem to be stable until individuals from separate comm
ities become acquainted, causing two groups to merge and
lowering C.
2-5
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FIG. 5. Time evolution of the
edges within one component fo
b51.25 and k50.01. Dotted
lines indicate connections that ex
isted in the previous frame an
have since decayed. Bold lines in
dicate new connections. All new
connections are made with vert
ces already included in this group
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whose forms are infinitely variable. While a large number
free parameters allows us a lot of flexibility to study t
behavior of the model and may, in addition, make the mo
a more accurate representation of the real world, we find
fact that the selection of behaviors that we get from
model is limited to a few general classes, as described ab
This suggests that it may be possible to formulate a
baroque model, one whose definition and dynamics are s
pler, and still retain most of the interesting behavior. In t
section we do just this.

Our simplified model incorporates all four of the cruci
features outlined in Sec. II, but in a simplified fashion
follows. First, all connections between vertices are only
ther present or absent—there is no longer any concep
connection strength. The exponential decay of connec
strength from Sec. III is replaced by a constant probabilityg
per unit time that an existing connection will disappear. Th
out of any initial group of connections, e2gt of them will
remain after timet in the absence of any other processes

Second, ‘‘meetings’’ occur between pairs of individua
represented by vertices at a rater, which is simply linear in
their numberm of mutual friends:r 5r 01r 1m. If a pair meet
and there is not already a connection between them, a
connection is established unless one of them already haz*
connections, in which case nothing happens. In other wo
z* forms a hard upper limit on the degreez of any vertex,
beyond which no more edges can be added.

Apart from being conceptually much simpler than our fi
model, this model is also much easier to simulate. Instea
having to use a complicated and inefficient continuous ti
simulation method, the model can be simulated directly
ing the following algorithm.

Let np5 1
2 N(N21) be the number of pairs of vertices

the network. Letne5 1
2 ( izi be the number of existing edge

where zi is the degree of thei th vertex. And let nm
5 1

2 ( izi(zi21) be the total number of mutual neighbors
pairs of vertices in the network.

~1! At each time step, we choosenpr 0 pairs of vertices
uniformly at random from the network to meet. If a pair me
who do not have a preexisting connection, and if neither
them already has the maximumz* connections then a new
connection is established between them.

~2! At each time step, we choosenmr 1 vertices at random
with probabilities proportional tozi(zi21). For each vertex
chosen we randomly choose one pair of its neighbors to m
and establish a new connection between them if they do
have a preexisting connection and if neither of them alre
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has the maximum numberz* of connections.
~3! At each time step, we chooseneg vertices with prob-

ability proportional tozi . For each vertex chosen we choo
one of its neighbors uniformly at random and delete the c
nection to that neighbor.

It is straightforward to convince oneself that repetition
these steps simulates the dynamics of the model propo
above.

As before, the network is initialized by starting with n
edges and running the first two steps~addition of connec-
tions! without the third~breaking any connections! until all
or most vertices have degreez* . Then all three steps are use
for the remainder of the simulation.

Figure 6 shows a sample network from a simulation
this model with N5250, r 050.0005, r 152 ~about 4850
pairs per time step!, g50.005, andz* 55. As with our first
model, there are clearly identifiable communities in the n
work, mostly connected together in a single giant comp
nent, although there are also communities that are well c
nected internally but disconnected from the rest of the gra
The values ofg and r 1 were chosen so that connection
based on mutual friendship have some stability over tim
even when they get broken, they are likely to be rema
quickly. This mechanism replaces the ‘‘reinforcemen
mechanism of the first model. However, there is alwa
some possibility that broken links will not be remade a
other links will appear instead, allowing for evolution of th
network structure over time at a rate dependent on the
rameter values. The network shown in Fig. 6 is also hig
clustered, having a clustering coefficient ofC50.53, where
the corresponding random graph would haveC50.02.

Most of the types of behavior seen in our first model c
be reproduced by appropriate choices of parameter value
this second model. For example, extremely high or low v
ues of the decay parameterg produce either highly fluctuat
ing structures with clustering not noticeably different fro
that of a random graph, or highly clustered graphs that
stagnant and barely evolve. Other parameter changes ca
fect the stability of the island communities in the graph ov
long periods, or vary the rate at which connection patte
within communities vary.

V. DISCUSSION

What can we learn from results of the type presen
here? The primary lesson is that complex and intuitively r
sonable patterns of social network structure and evolu
2-6
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can emerge from very simple rules. Furthermore, the gen
form of those patterns is not strongly influenced by the m
croscopic details of the rules, so that most of the interes
behaviors can be reproduced in a much simplified mo
which is clearly not a realistic representation of real-wo
social behaviors.

The crucial features that we find necessary to prod
plausible networks are three in number:~1! meetings be-
tween pairs of individuals giving rise to friendships at a ra
that is high if a pair has one or more mutual friends and l
otherwise;~2! decay of friendships between pairs of ind
viduals who no longer meet or rarely do so;~3! an upper
limit ~either soft or hard! on the number of friendships a
individual can maintain.

These rules are quite different from the rules that ha
been used to model the evolution of graphs in other are
such as the evolution of the world-wide web. While the ev
lution of the web appears to be dominated by preferen
attachment—vertices with many edges accrue new ones

FIG. 6. Network structure generated in a run of our seco
model withN5250, r 050.0005,r 152 ~about 4850 pairs per time
step!, g50.005, andz* 55.
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higher rate than those with few—we conjecture that soc
network growth is dominated by the introduction of futu
acquaintances to one another by mutual friends. As a re
almost everything about the resulting graphs is different
tween the two cases. Where preferential attachment yiel
graph with a power-law degree distribution, the limit w
place on vertex degree in our social networks create
sharply peaked distribution. Where graphs grown with pr
erential attachment show clustering coefficients only sligh
higher than the corresponding random graph, our social
work models show very high clustering coefficients, simi
to those seen in real-world social networks. And where
structure of the web and similar networks is dominated
their rapid growth, the structure of our social networks
dominated by constant rewiring of connections between
isting vertices, with the addition of new vertices not playin
a major role.

But perhaps the most intriguing feature of our models
that they show community structure in the networks th
generate: there are groups of vertices with many connect
between their members and few connections to vertices
side the group. For some parameter values, these comm
ties even separate entirely and there are no connections
tween them at all. Community formation is certainly
feature of real social networks also and it is interesting to
that communities can arise from simple local growth ru
only. We are not aware of any study that has shown
existence of such communities in preferential attachm
models. Interestingly, however, the real world-wide w
doesshow community structure@32#. Perhaps then a realisti
model of the growth of the web should include some ad
tional elements similar to those in our social network mod
in order to capture community formation fully.

This paper represents only a first attempt at modeling
evolution of the structure of social networks. There are ma
possible directions for further study. One can ask whet
there are important mechanisms of network growth that
have missed out of the present models, or whether even
simplest model is still more complicated than it need b
Perhaps the three basic rules given here are not all ne
sary? It would also be useful to acquire a detailed und
standing of how the parameters of the models relate to
another—what is the structure of the phase diagram for th
models? And is an analytic approach to these or similar m
els possible? It would be helpful if we could understand
qualitative behaviors seen in our simulations in terms of a
lytic calculations, either approximate or exact. We hope t
the first steps taken here will encourage others to look
these questions in more depth.
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